CSE1320
Test #1
Section 002

Spring 2009 Test #2

CSE1320
Section 002

Monday, April 13, 2009
Dr. Tiernan

Name:

Section:

002

Student ID:
 1000

Instructions:

1.
Fill in your name and the rest of your ten-digit student ID above.

2.
This is a OPEN book, OPEN notes, NO CALCULATOR test. No digital electronics of any sort are allowed to be used during the test.

3.
The test is worth a total of 100 points. The value for each question is given either at the top of that section of questions or in curly braces to the right hand side of the question. There are extra credit questions at the end of the test worth an additional 10 points total.

4. If you do not understand a question, raise your hand and the proctor will come over for you to ask about it. The proctor may or may not answer your question but you should still ask.

5. In questions where I have given you code to use, if you find typos, assume that the code is SUPPOSED to work and just indicate what assumption you made for your answer. This applies in all cases unless the question is specifically about the syntax of the code - in which case there are errors on purpose.

6. I will always try to give partial credit so the more of your work that you show, the more I am able to grade for partial credit if the answer is not entirely correct. It is to your benefit to show your work on the test.

NO CHEATING!

1. a.
Create an enumerated type that contains the names of at least six sports and meets all of the following requirements:

At least two of the sports should be played with a ball and at least two of the sports should NOT require a ball.

Sports that have the same kind of scoring should have the same numeric value (i.e. if two sports both have results reported as time in hundredths of seconds then those sports should have the same numeric value in the enumerated type).

At least two sports should be team sports and at least one sport should be an individual sport. The other sports can be either individual sports or team sports. (If you have trouble thinking of six, think about Olympic sports or sports at UTA.) (As an example, synchronized swimming is a team sport. Do not include this is your type.)
{9}

Enum sports{soccer=0

 Basketball=0

Snow_ski=1

Sprint=1

Ping-pong=0

Epee=2};
1.b.
Related to the enumerated type above, create a union type that can contain at least three different methods of recording results for the sports in the enumerated type. It should have the following characteristics:

Your union should contain at least three different data types.

All of the sports in your enumerated type should be able to have their results saved in the union. As an example, synchronized_swimming could be scored with points.

Include comments to indicate which sport goes with which results method.

If your sports from 1.a. all use the same type of scoring, include two other types of scoring that would apply to other sports.
{9}

Union results{

Int points; //soc, bball, pp

Float time; //snow_ski, sprint

Short touches; // epee

};
1.c

Create a struct type to contain a team/individual which competes in one of the sport types listed above. The struct should contain:

a pointer to the name of the competitor (team or person),

the number of years the competitor has participated in the sport,

the year that the competitor had its best record,

the amount of U.S. money the competitor made in their best year,

an enumerated type member that will hold the sport type,

a one bit bitfield indicating if the sport is a Team sport (0) or an Individual sport (1), and

a union member that contains the best result the competitor ever achieved.

Use data types that most reasonably match the information to be stored.
{14}

 struct competitor{

char*name;

int years; best year;

float best_amt;

enum sports competition;

int ind:1;

union results comp results;

};
2.
Write out the following C statement in words:
{6}

float ** (* flint)(int *, char * (*)(float))

flint is a pointer to a function with two inputs- a pointer to int and a pointer to a function that takes in one float input and returns a pointer to char- and returns a pointer to a pointer to float
3.
A binary tree is an abstract data type where a “parent” node can have zero, one or two “children” nodes that it connects to. Each child node can then in turn be a parent to two or fewer children nodes. Answer the following questions:

a.
What kind of physical data type would you use to build this?
{3}

linked list
b.
Why would you choose that type? {6}

simple to make struct w/ 2 pointers
c.
How would it work? {6}

one pointer points to right child and other points to left child
4.
Write the name of the library function after its description
{3 each, 9 total}

a.
Converts from lower value ASCII letter style to higher value ASCII letter style

toupper
b.
Takes in and x and a y as input and returns x times itself y times

pow
c.
Returns almost completely human-useless measurement information

time

5.a.
Write a function called loan to do the following. Given three inputs of a starting amount of money taken as a loan, an interest rate that is not a whole number, and a number of years, calculate the monthly payments and the total amount of money repaid (the principal of the loan plus the interest) over the life of the loan using the following algorithm: Use static variables to help do the calculations
{15}

While loan value is > 0,

Calculate the amount of principal repaid each year as (loan amount / number of years)

Calculate total principal paid so far

Calculate remaining loan as (loan amount – principal repaid so far)

Calculate the amount of interest to be paid for the current year as (remaining loan * interest rate).

Calculate the total amount of interest paid so far

Calculate total amount of interest and principal paid so far.

Recursively call this algorithm passing in the new remaining loan value and reducing the years by one until the remaining loan is 0.

When loan value is 0,

Print the total amount of money repaid and

Calculate the total monthly payment as (total amount repaid / (number of years * 12)) and print this value

double loan (float lamt, float lint, int numyr)
{
static float prin=0;
static float totprin=0;

float yrint=0;
static float totyrint=0;
float totpiad;
float remlamt;
if (lamt>0)
{
if (prin==0)
prin= lamt/numyr;

totprin=totprin+prin;

remlamt=lamt-totprin; //not lamt-prin;
yrint=remlamt*lint;

totyrint=totyrint + yrint;

totpaid=totprin + totyrint

loan(remlamt, lint, numyr-1);

}

else
{
printf (“ total amt paid is %f”, totpaid);

printf (“ total mo paid will be % f “,(totpaid/(numyr*12));

}
return;
}
5.
For the function in the previous question (5.a.) give three function calls as specified below that would call this function and would test certain capabilities of the function and predict the results for that function call. Indicate in words what you are testing for with each call and write down the output you would expect from the function for each call.
{5 each, 15 total}

b.
One function call should test the function with easy-to-check values for the three inputs.

Function call: Loan (10000, 10;5)

This call tests for: correctness of the calculations

The expected result should be:

Total amount $12000, mo payment $200
c.
Another function call should test the boundary condition of having an interest rate of 0%.

Function call:

Loan (10000,0,5)
This call tests for:

Verifying that interest is calculated correctly
The expected result should be:

Total amt 10000, mo payment 166.67
d.
The third function call should test another boundary condition of your choice.

Function call:

loan (10000,10,0)
This call tests for:

Boundary condition of 0 years of lon
The expected result should be:

Error divide by zero when try to calculate principal amt
6.
Given the C program below write an appropriate operating system call to pass in all the expected values:
{8}

main(int argc, char * argv[])

{

int j, n;

FILE * f;

float t, p;

if (argc < 4)

{
printf (“Not enough arguments”);

return;

}

else

{
n = atoi(argv[1]);

t = strtod(argv[3]);

if ((n < 1) || (t < 8.5))

{
printf(“No data or test value is invalid”);

return;

}

f = fopen(argv[2], “r”);

for (j = 0; j < n; j++)

{
scanf(“%f”, &p);

if (p < t)

printf(“Value %d is invalid: %f”, n, p);

}

}

}

a.out
Argv[1] must be >=1

Argv [2] must be file name

Argv[3] must be > or = 8.5
A valid call to this C program from the operating system would be:

>

a.out 12 myfile.txt 37.4

Extra Credit questions - Worth two {2} points each unless stated otherwise.

XC1.
For the struct in question 1.c declare a variable called winner of that struct type and then assign the value of Mavericks to the team name for that struct.
{2 pts}

Struct competition winner
Char*mav=”Mavericks”

Winner.name=mav;
XC2.
 Which three types of storage classes apply to how local variables are stored?
{2}

Auto
Static

register
XC3. Write the following as a C statement:

harpo is function with two inputs, a pointer to a function with one input of an integer and a return type of float, and a pointer to character, and a return type of pointer to pointer to double.
{4}

double** harpo (float(*)(int); char*)
XC4.
What kind of question were you expecting that I didn’t ask on this test?

{ANY answer will receive 2 points}

Page 5 of 8

